Thursday 21 July 2016

haritha haram

T. Karnakar Reddy Comment   ·   print   ·   T   T    Tweet in Share Pranab to do the honours... thumbnail 1 summary

Comment   ·   print   ·   T  T  

Pranab to do the honours at Yadagirigutta

President Pranab Mukherjee will launch the prestigious ‘Telanganaku Haritha Haram’ programme near Yadagirigutta in Nalgonda district on July 3.
Following a communication from Chief Secretary Rajiv Sharma, District Collector P. Satyanarayana Reddy along with other officials visited the temple town on Tuesday evening to identify the location for launching the massive plantation drive. The district administration has zeroed in on 15 acres area located near Surendrapuri where the State government has decided to develop a deer park as part of the Yadagirigutta development project.
As part of his Southern sojourn, the officials stated, the President would stay at Rashtrapati Nilayam in Bolarum in Hyderabad from June 29 to July 8. The President’s office has already communicated to the State government accepting its request to the President to launch Haritha Haram, official sources said.
Chief Secretary, Director General of Police, Principal Secretaries of Endowments, Forests and a few other departments would visit the location on June 26. The President would also participate in special prayers (puja) on the hill shrine during his visit.
Officials stated that Chief Minister K. Chandrashekar Rao has selected Yadagirgutta since it would draw the nation's attention to temple after the President's visit.
Earlier in the day, the Chief Minister addressed a letter to the President requesting him to launch Haritha Haaram. The President’s participation would add significance to the programme and enthuse all sections people for taking active participation in the plantation drive being taken up on a massive scale, he said.

Sunday 17 July 2016

Saturday 9 July 2016

greenary

प्रकृति निबंध प्रकृति पर निबंध प्रकृति के विषय को समझने के लिये इस पर आसान भाषण और निबंध दिये जा रहे है। इससे हमारे केजी से ... thumbnail 1 summary

प्रकृति निबंध

प्रकृति पर निबंध

प्रकृति के विषय को समझने के लिये इस पर आसान भाषण और निबंध दिये जा रहे है। इससे हमारे केजी से लेकर 10 तक के बच्चों और विद्याथर्यीं की शिक्षा में नई रचनात्मकता का प्रवेश होगा। प्रकृति हमारे जीवन का महत्वपूर्ण हिस्सा है जिसके बारे में हमें अपने बच्चों को बताना चाहिये। तो, चलिये निबंध लेखन और भाषण व्याख्यान के द्वारा अपने बच्चों को कुदरत के करीब लाते है।

प्रकृति पर निबंध 1 (100) शब्द

हम सबसे सुंदर ग्रह पर निवास करते है, जी हाँ धरती, जो हरियाली से युक्त बेहद सुंदर और आकर्षक है। कुदरत हमारी सबसे अच्छी साथी होती है जो हमें धरती पर जीवन जीने के लिये सभी जरुरी संसाधन उपलब्ध कराती है। प्रकृति हमें पीने को पानी, सांस लेने को शुद्ध हवा, पेट के लिये भोजन, रहने के लिये जमीन, पशु-पक्षी, पेड़-पौधे आदि  हमारी  बेहतरी के लिये उपलब्ध कराती है। हमें बिना इसके पारिस्थितिक संतुलन को बिगाड़े इसका आनन्द लेना चाहिये। हमें अपने प्राकृतिक परिवेश का ध्यान रखना चाहिये, स्थिर बनाना चाहिये, साफ रखना चाहिये और विनाश से बचाना चाहिये जिससे हम अपनी प्रकृति का हमेशा आनन्द  ले सकें। ये हम इंसानों को ईश्वर के द्वारा दिया गया सबसे खूबसूरत उपहार है जिसे नुकसान पहुँचाने के बजाय उसका आनन्द लेना चाहिये।

प्रकृति पर निबंध 2 (150) शब्द

हमारे सबसे आस-पास सुंदर और आकर्षक प्रकृति है जो हमें खुश रखती है और स्वस्थ जीवन जीने के लिये एक प्राकृतिक पर्यावरण उपलब्झ कराती है। हमारी प्रकृति हमें कई प्रकार के सुंदर फूल, आकर्षक पक्षी, जानवर, हरे वनस्पति, नीला आकाश, भूमि, समुद्र, जंगल, पहाड़, पठार आदि प्रदान करती है। हमारे स्वस्थ जीवन के लिये ईश्वर ने हमें एक बेहद सुंदर प्रकृति बना कर दी है। जो भी चीजें हम अपने जीवन के लिये इस्तेमाल करते है वो प्रकृति की ही संपत्ति है जिसे हमें सहेज कर रखना चाहिये।
हमें इसकी वास्तविकता को खत्म नहीं करना चाहिये और साथ ही इसके पारिस्थितिकी तंत्र को असंतुलित नहीं करना चाहिये। हमारी कुदरत हमें जीने और खुश के लिये बहुत सुंदर वातावरण प्रदान करती है इसलिये ये हमारा कर्तव्य है कि हम इसको सुरक्षित और स्वस्थ रखें। आज के आधुनिक समय में, इंसानों की बहुत सी खुदगर्जी और गलत कामों ने प्रकृति को बुरी तरह प्रभावित किया है लेकिन हम सभी को इसकी सुंदरता को बनाये रखना है।

प्रकृति पर निबंध 3 (200) शब्द

हमारे आस-पास सब कुछ प्रकृति है जो बहुत खूबसूरत पर्यावरण से घिरी हुई है। हम हर पल इसे देख सकते है और इसका लुफ्त उठा सकते है। हम हर जगह इसमें प्राकृतिक बदलावों को देखते, सुनते, और महसूस करते है। हमें इसका पूरा फायदा उठाते हुये शुद्ध हवा के लिये रोज सुबह की सैर करने के बहाने घर से बाहर जाना चाहिये तथा प्रकृति के सुबह की सुंदरता का आनन्द उठाना चाहिये। हालाँकि सूर्योदय के साथ ये दिन में नारंगी और सूर्यास्त होने के दौरान ये पीले रंग सा हो जाता है। थोड़ा और समय बीतने के साथ ही काली रात का रुप ले लेता है।
प्रकृति के पास हमारे लिये सब कुछ है लेकिन हमारे पास उसके लिये कुछ नहीं है बल्कि हम उसकी दी गई संपत्ति को अपने निजी स्वार्थों के लिये दिनों-दिन बरबाद कर रहे है। आज के आधुनिक तकनीकी युग में रोज बहुत सारे आविष्कार हो रहे जिसका हमारी पृथ्वी के प्रति फायदे-नुकसान के बारे में नहीं सोचा जा रहा है। धरती पर हमेशा जीवन के अस्तित्व को संभव बनाने के लिये हमारी प्रकृति द्वारा प्रद्त्त संपत्ति के गिरते स्तर को बचाने की जिम्मेदारी हमारी है। अगर हमलोग अपने कुदरत को बचाने के लिये अभी कोई कदम नहीं उठाते है तो ये हमारी आने वाली पीढ़ी के लिये खतरा उत्पन्न कर देगा। हमें इसके महत्व और कीमत को समझना चाहिये इसके वास्तविक स्वरुप को बनाये रखने की कोशिश करनी चाहिये।

प्रकृति पर निबंध 4 (250) शब्द

धरती पर जीवन जीने के लिये भगवान से हमें बहुमूल्य और कीमती उपहार के रुप में प्रकृति मिली है। दैनिक जीवन के लिये उपलब्ध सभी संसाधनों के द्वारा प्रकृति हमारे जीवन को आसान बना देती है। एक माँ की तरह हमारा लालन-पालन, मदद, और ध्यान देने के लिये हमें अपने प्रकृति का धन्यवाद करना चाहिये। अगर हम सुबह के समय शांति से बगीचे में बैठे तो हम प्रकृति की मीठी आवाज और खूबसूरती का आनन्द ले सकते है। हमारी कुदरत ढ़ेर सारी प्राकृतिक सुंदरता से सुशोभित है जिसका हम किसी भी समय रस ले सकते है। पृथ्वी के पास भौगोलिक सुंदरता है और इसे स्वर्ग या शहरों का बगीचा भी कहा जाता है। लेकिन ये दुख की बात है कि भगवान के द्वारा इंसानों को दिये गये इस सुंदर उपहार में बढ़ती तकनीकी उन्नति और मानव जाति के अज्ञानता की वजह से लगातार ह्रास हो रहा है।
प्रकृति हमारी वास्तविक माँ की तरह की होती है जो हमें कभी नुकसान नहीं पहुँचाती बल्कि हमारा पालन-पोषण करती है। सुबह जल्दी प्रकृति के गोद में ठहलने से हम स्वस्थ और मजबूत बनते है साथ ही ये हमें कई सारी घातक बीमारीयों जैसे डायबिटिज, स्थायी हृदय घात, उच्च रक्त चाप, लीवर संबंधी परेशानी, पाचन संबंधी समस्या, संक्रमण, दिमागी समस्याओं आदि से भी दूर रखता है। ये हमारे स्वास्थ्य के लिये अच्छा है कि हम चिड़ियों की मधुर आवाज, मंद हवा की खनखनाहट, ताजी हवा की सनसाहट, बहती नदी की आवाज आदि सुबह - सुबह सुनें। ज्यादातर कवि, लेखक और लोगों को अपने दिमाग, शरीर, और आत्मा को दुबारा से ऊर्जायुक्त बनाने के लिये उद्यानों में योगा और ध्यान करते देखा जा सकता है।

Wednesday 6 July 2016

BINARY TREES

Binary Trees by Nick Parlante This article introduces the basic concepts of binary trees, and then works through a series of practice ... thumbnail 1 summary
Binary Trees
by Nick Parlante
This article introduces the basic concepts of binary trees, and then works through a series of practice problems with
solution code in C/C++ and Java. Binary trees have an elegant recursive pointer structure, so they are a good way to
learn recursive pointer algorithms.
Contents
Section 1
. Binary Tree Structure -- a quick introduction to binary trees and the code that operates on them
Section 2
. Binary Tree Problems -- practice problems in increasing order of difficulty
Section 3
. C Solutions -- solution code to the problems for C and C++ programmers
Section 4
. Java versions -- how binary trees work in Java, with solution code
Stanford CS Education Library -- #110
This is article #110 in the Stanford CS Education Library. This and other free CS materials are available at the
library (
http://cslibrary.stanford.edu/
). That people seeking education should have the opportunity to find it.
This article may be used, reproduced, excerpted, or sold so long as this paragraph is clearly reproduced. Copyright
2000-2001, Nick Parlante, nick.parlante@cs.stanford.edu.
Related CSLibrary Articles
Linked List Problems (
http://cslibrary.stanford.edu/105/
) -- a large collection of linked list problems
using various pointer techniques (while this binary tree article concentrates on recursion)
Pointer and Memory (
http://cslibrary.stanford.edu/102/
) -- basic concepts of pointers and memory
The Great Tree-List Problem (
http://cslibrary.stanford.edu/109/
) -- a great pointer recursion problem
that uses both trees and lists
Section 1 -- Introduction To Binary Trees
A binary tree is made of nodes, where each node contains a "left" pointer, a "right" pointer, and a data element.
The "root" pointer points to the topmost node in the tree. The left and right pointers recursively point to smaller
"subtrees" on either side. A null pointer represents a binary tree with no elements -- the empty tree. The formal
recursive definition is: a
binary tree
is either empty (represented by a null pointer), or is made of a single node,
where the left and right pointers (recursive definition ahead) each point to a
binary tree
.
Binary Trees
Page: 2
http://cslibrary.stanford.edu/110/
BinaryTrees.html
A "binary search tree" (BST) or "ordered binary tree" is a type of binary tree where the nodes are arranged in order:
for each node, all elements in its left subtree are less-or-equal to the node (<=), and all the elements in its right
subtree are greater than the node (>). The tree shown above is a binary search tree -- the "root" node is a 5, and its
left subtree nodes (1, 3, 4) are <= 5, and its right subtree nodes (6, 9) are > 5. Recursively, each of the subtrees must
also obey the binary search tree constraint: in the (1, 3, 4) subtree, the 3 is the root, the 1 <= 3 and 4 > 3. Watch out
for the exact wording in the problems -- a "binary search tree" is different from a "binary tree".
The nodes at the bottom edge of the tree have empty subtrees and are called "leaf" nodes (1, 4, 6) while the others
are "internal" nodes (3, 5, 9).
Binary Search Tree Niche
Basically, binary search trees are fast at insert and lookup. The next section presents the code for these two
algorithms. On average, a binary search tree algorithm can locate a node in an N node tree in order lg(N) time (log
base 2). Therefore, binary search trees are good for "dictionary" problems where the code inserts and looks up
information indexed by some key. The lg(N) behavior is the average case -- it's possible for a particular tree to be
much slower depending on its shape.
Strategy
Some of the problems in this article use plain binary trees, and some use binary search trees. In any case, the
problems concentrate on the combination of pointers and recursion. (See the articles linked above for pointer articles
that do not emphasize recursion.)
For each problem, there are two things to understand...
The node/pointer structure that makes up the tree and the code that manipulates it
The algorithm, typically recursive, that iterates over the tree
When thinking about a binary tree problem, it's often a good idea to draw a few little trees to think about the
various cases.
Binary Trees
Page: 3
http://cslibrary.stanford.edu/110/
BinaryTrees.html
Typical Binary Tree Code in C/C++
As an introduction, we'll look at the code for the two most basic binary search tree operations -- lookup() and
insert(). The code here works for C or C++. Java programers can read the discussion here, and then look at the Java
versions in
Section 4
.
In C or C++, the binary tree is built with a node type like this...
struct node {
int data;
struct node* left;
struct node* right;
}
Lookup()
Given a binary search tree and a "target" value, search the tree to see if it contains the target. The basic pattern of
the lookup() code occurs in many recursive tree algorithms: deal with the base case where the tree is empty, deal
with the current node, and then use recursion to deal with the subtrees. If the tree is a binary search tree, there is
often some sort of less-than test on the node to decide if the recursion should go left or right.
/*
Given a binary tree, return true if a node
with the target data is found in the tree. Recurs
down the tree, chooses the left or right
branch by comparing the target to each node.
*/
static int lookup(struct node* node, int target) {
// 1. Base case == empty tree
// in that case, the target is not found so return false
if (node == NULL) {
return(false);
}
else {
// 2. see if found here
if (target == node->data) return(true);
else {
// 3. otherwise recur down the correct subtree
if (target < node->data) return(lookup(node->left, target));
else return(lookup(node->right, target));
}
}
}
The lookup() algorithm could be written as a while-loop that iterates down the tree. Our version uses recursion to
help prepare you for the problems below that require recursion.
Pointer Changing Code
There is a common problem with pointer intensive code: what if a function needs to change one of the pointer
parameters passed to it? For example, the insert() function below may want to change the root pointer. In C and
C++, one solution uses pointers-to-pointers (aka "reference parameters"). That's a fine technique, but here we will
use the simpler technique that a function that wishes to change a pointer passed to it will
return
the new value of
the pointer to the caller. The caller is responsible for using the new value. Suppose we have a change() function
Binary Trees
Page: 4
http://cslibrary.stanford.edu/110/
BinaryTrees.html
that may change the the root, then a call to change() will look like this...
// suppose the variable "root" points to the tree
root = change(root);
We take the value returned by change(), and use it as the new value for root. This construct is a little awkward, but
it avoids using reference parameters which confuse some C and C++ programmers, and Java does not have reference
parameters at all. This allows us to focus on the recursion instead of the pointer mechanics. (For lots of problems
that use reference parameters, see CSLibrary #105, Linked List Problems,
http://cslibrary.stanford.edu/105/
).
Insert()
Insert() -- given a binary search tree and a number, insert a new node with the given number into the tree in the
correct place. The insert() code is similar to lookup(), but with the complication that it modifies the tree structure.
As described above, insert() returns the new tree pointer to use to its caller. Calling insert() with the number 5 on
this tree...
2
/ \
1 10
returns the tree...
2
/ \
1 10
/
5
The solution shown here introduces a newNode() helper function that builds a single node. The base-case/recursion
structure is similar to the structure in lookup() -- each call checks for the NULL case, looks at the node at hand, and
then recurs down the left or right subtree if needed.
/*
Helper function that allocates a new node
with the given data and NULL left and right
pointers.
*/
struct node* NewNode(int data) {
struct node* node = new(struct node); // "new" is like "malloc"
node->data = data;
node->left = NULL;
node->right = NULL;
return(node);
}
/*
Give a binary search tree and a number, inserts a new node
with the given number in the correct place in the tree.
Returns the new root pointer which the caller should
then use (the standard trick to avoid using reference
parameters).
*/
struct node* insert(struct node* node, int data) {
Binary Trees
Page: 5
http://cslibrary.stanford.edu/110/
BinaryTrees.html
// 1. If the tree is empty, return a new, single node
if (node == NULL) {
return(newNode(data));
}
else {
// 2. Otherwise, recur down the tree
if (data <= node->data) node->left = insert(node->left, data);
else node->right = insert(node->right, data);
return(node); // return the (unchanged) node pointer
}
}
The shape of a binary tree depends very much on the order that the nodes are inserted. In particular, if the nodes
are inserted in increasing order (1, 2, 3, 4), the tree nodes just grow to the right leading to a linked list shape where
all the left pointers are NULL. A similar thing happens if the nodes are inserted in decreasing order (4, 3, 2, 1). The
linked list shape defeats the lg(N) performance. We will not address that issue here, instead focusing on pointers
and recursion.
Section 2 -- Binary Tree Problems
Here are 14 binary tree problems in increasing order of difficulty. Some of the problems operate on binary search
trees (aka "ordered binary trees") while others work on plain binary trees with no special ordering. The next
section,
Section 3,
shows the solution code in C/C++.
Section 4
gives the background and solution code in Java. The
basic structure and recursion of the solution code is the same in both languages -- the differences are superficial.
Reading about a data structure is a fine introduction, but at some point the only way to learn is to actually try to
solve some problems starting with a blank sheet of paper. To get the most out of these problems, you should at least
attempt to solve them before looking at the solution. Even if your solution is not quite right, you will be building up
the right skills. With any pointer-based code, it's a good idea to make memory drawings of a a few simple cases to
see how the algorithm should work.
1. build123()
This is a very basic problem with a little pointer manipulation. (You can skip this problem if you are already
comfortable with pointers.) Write code that builds the following little 1-2-3 binary search tree...
2
/ \
1 3
Write the code in three different ways...
a: by calling newNode() three times, and using three pointer variables
b: by calling newNode() three times, and using only one pointer variable
c: by calling insert() three times passing it the root pointer to build up the tree
(In Java, write a build123() method that operates on the receiver to change it to be the 1-2-3 tree with the given
coding constraints. See
Section 4
.)
struct node* build123() {